

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : FM(15A01305)

Course & Branch: B.Tech - CE

Year & Sem: II-B.Tech & I-Sem

Regulation: R15

<u>UNIT – II</u>

Buoyancy and Kinematics of Fluid Motion

1.	a) Distinguish between stream line, streak line and path line.			
	b) Write a brief note on continuity equation.			
2.	Obtain an expression for continuity equation for a three - dimensional flow.	10M		
3.	a) The velocity potential function is given by $\emptyset = 5(x^2 - y^2)$. Calculate the velocity			
	components at the point (4,5).	5M		
	b) A stream function is given by $\emptyset = 5x - 6y$. Calculate the velocity components and			
	also magnitude and direction of the resultant velocity at any point.	5M		
4.	If for a two – dimensional potential flow, the velocity potential is given by			
	$\emptyset = x(2y - 1)$. Determine the velocity at the point p (4,5). Determine also the value			
	of stream function Ψ at the point p.	10M		
5.	Derive an expression for the meta-centre height of a floating body.			
6.	A wooden log of 0.6 m diameter and 5 m length is floating in river water. Find the			
	depth of the wooden log in water when the sp. gravity of the log is 0.7.	10M		
7.	Water flows through a pipe AB 1.2 m at 3 m/sec and then passes through a pipe BC			
	1.5 m diameter. At C, the pipe is branched. Branch CD is 0.8 m in diameter and			
	carries one-third of the flow in AB. The flow velocity in branch CE is 2.5 m/sec.			
	Find the volume rate of flow in AB, the velocity in BC, the velocity in CD and th	e		
	diameter of CE.	10M		
8.	a) What is the relation between stream function and velocity potential function?			
	b) Define			
	i) Equipotential line ii) Line of constant stream function iii) Flow net	5M		
9.	a) Distinguish between stream line, streak line and path line.	5M		
	b) Write a brief note on continuity equation.	5M		

		QUESTION BANK	2016
10.	a) Define buoyancy and centre of buoyancy.		2M
	b) Define the term meta-centre and meta-centre height.		2M
	c) Define uniform and non uniform flow.		2M
	d) Distinguish between rotational and irrotational flow.		2M
	e) Differentiate between forced vortex and free vortex flow.		2M

Prepared by: M. Muzaffar Ahmed and Y. Guru Prasad.

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : FM (15A01305)

Year & Sem: II-B.Tech & I-Sem

Course & Branch: B.Tech - CE **Regulation:** R15

<u>UNIT – II</u>

Buoyancy and Kinematics of Fluid Motion

1. For a floating body, the buoyant force passes through the []	
A) Centre of gravity of body	B) Centre of gravity of the submerged part of	f thr	body	
C) Mata centre of the body	D) Centroid of the liquid displaced by the bo	dy		
2. The condition for stable eqilibrium for the floating body is []	
A) The meta centre coinside with the centre of gravity				
B) The meta centre below with the centre of gravity				
Name of the Subject			Page 1	

			QUESTION BANK	2016
C) The meta centre above	ve with the centre of gr	avity		
D) The centre of buoyan	ncy is above the centre	of gravity		
3. Shear stress develops on a	a fluid element, if the f	luid	[]
A) is at rest	B) if the cont	ainer is subjected to	uniform linear accel	eration
C) is viscous	D) is viscous	and the flow is non-	uniform	
4. For a body completely s	ubmerged in a fluid, th	e centre of gravity (G) and the centre of l	ouoyancy
(B)are known. The body	is considered to be in s	stable equilibrium if	[]
A) B does not coinside	with the centre of mas	s of the displaced flu	ıid	
B) G coinside with the	centre of mass of the d	isplaced flid		
C) B lies below the G				
D) B lies above the G				
5. The metacentric height of	f a floating body is		[]
A) The distance between	n metacentre and centre	e of buoyancy		
B) The distance betwee	n centre of buoyancy a	nd centre of gravity		
C) The distance between	metacentre and centre	of gravity		
D) None of the above				
6. The resultant hydrostatic	force acts through a po	oint known as]]
A) Centre of gravity	B) Centre of buoyand	cy C) Centre of pr	ressure D) None of	the above
7. What is buoyant force]]
A) Lateral force acting of	on a submerged body			
B) Resultant force acting	g on a submerged body			
C) Resultant force acting	g on a submerged body			
D) Resultant hydrostatic	force on a body due to	o fluid surrounding it	t	
8. Resultant pressure of the	liquid in case of an imi	nersed body acts thr	ough which one of th	ne following
]]
A) Centre of gravity	B) Centre of pressure	C) Metacenter	D) Centre of buc	oyancy
9. If B is the centre of buoy	rancy, G is the centre of	f gravity and M is th	e Metacentre of a flo	ating body,
the body will be in stable	e equilibrium if]]
A) $MG = 0$	B) M is below G	C) BG=0	D) M is above G	
10. The distance from the ce	entre of buoyancy to th	e meta-centre is give	en by I/Vd where Vd	is the
volume of fluid displace	d. What does I represe	nt	[]
Name of the Subject				Page 1

A) Moment of inertia of a horizontal section of the body taken at the surface of the fluid							
B) Moment of inertia about its vertical centroidal axis							
C) Polar moment of inertia							
D) Moment of inertia about its horizontal centroidal axis							
11. A large metacentric height in a vessel	[]					
A) Improves stability and makes periodic time to oscillation longer							
B) Impairs stability and makes periodic time of oscillation shorter							
C) Has no effect on stability or the periodic time of oscillation							
D) Improves stability and makes the periodic time of oscillation shorter							
12. What are the forces that influence the problem of fluid static	[]					
A) Gravity and viscous forces B) Gravity and pressure forces							
C) Viscous and surface tension forces D) Gravity and surface tension							
13. For a fluid element in a two dimensional flow field (x-y plane), if it will undergo	[]					
A) Translation only B) Translation and rotation							
C) Translation and deformation D) Deformation only							
14. In adiabatic flow with friction, the stagnation temperature along a streamline	[]					
A) Increases B) Decreases C) Remains constant D) None							
15. Streamlines, path lines and streak lines are virtually identical for	[]					
A) Uniform flow B) Flow of ideal fluids C) Steady flow D) Non unifo	orm fl	ow					
16. Existence of velocity potential implies that	[]					
A) Fluid is in continuum B) Fluid is irrotational C) Fluid is ideal D) Fluid is compressible							
17. In a flow field, the streamlines and equipotential lines	[]					
A) Are Parallel B) Are orthogonal everywhere in the flow field							
C) Cut at any angle D) Cut orthogonally except at the stagnation point	C) Cut at any angle D) Cut orthogonally except at the stagnation points						
18. The flow in pipe is laminar if	[]					
A) Reynolds number is less than 2000 B) Reynolds number is more than 2000							
C) Reynolds number is more than 4000 D) None of the above							
19. A stream line is a line	[]					
A) Which is along the path of particle B) Which is always parallel to the r	main f	low					
C)Across which there is no flow D) None of these							
20. Continuity equation can take the form	[]					
Name of the Subject		Page 1					

			QUESTION BANK	2016
A) $A_1V_1 = A_2V_2$	B) Q ₁ V ₁ =Q ₂ V ₂	C) $A_1V_2 = A_2V_1$	D) $A_1A_2 = V_1V_2$	
21. Continity equation dea	ls with the law of conser	rvation of	[]
A) Mass	B) Momentum	C) Energy	D) None of the a	bove
22. Which of the following	g functions represent the	velocity potential of	a function []
A) $\phi = X^2 + Y^2$	B) $\phi = X^2 - Y^2$	C) $\phi = 2X^2 + Y^2$	D) $\phi = X^3 + Y^3$	
23. In an immersed body,	centre of pressure is		[]
A)At the centre of grav	wity B) Above the c	entre of gravity		
C)Below be centre of g	gravity D) Could be ab	ove or below		
24. A flow is called super-	sonic if the		[]
A) Velocity of flow is	s very high B) Di	scharge is difficult to	measure	
C) Mach number is b	etween 1 and 6 D) No	one of these		
25. A one dimensional flo	w is one which		[]
A) Is uniform flow	B) Is steady	uniform flow		
C) Takes place in strai	ght lines D) Involves a	zero transverse comp	onent of flow	
26. The condition for unsta	able equilibrium of a flo	ating and submerged	body are [1
A) M is above the G	B) M is below the G	C) M and G are c	coinside D) B is a	above the G
27. For incompressible flo	w the density of fluid is		[]
A) Constant	B) Proportional	C) Not constant	D) Equal	
28. The continity equation	n in three dimensions is		-]
A) $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial x}$	B) $\frac{\partial V}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial w}{\partial x}$	$C)\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$	D) $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}$	$\frac{\partial w}{\partial x} + \frac{\partial w}{\partial x}$
29. For steady flow in vel	ocity potential, the veloc	city in x-direction is	[]
A) u= - $\frac{\partial \varphi}{\partial y}$	B) u= - $\frac{\partial \varphi}{\partial x}$	C) u= - $\frac{\partial \varphi}{\partial z}$	D) u= $\frac{\partial \varphi}{\partial y}$	
30. For steady flow in stre	eam function, the velocit	y in x-direction is	[]
A) u= - $\frac{\partial \Psi}{\partial y}$	B) u= - $\frac{\partial \Psi}{\partial x}$	C) u= - $\frac{\partial \Psi}{\partial z}$	D) u= $\frac{\partial u}{\partial t}$	$\frac{\varphi}{y}$
31. For steady flow in velocity A $u = -\frac{\partial \varphi}{\partial y}$	bootity potential, the veloc B) u= - $\frac{\partial \varphi}{\partial x}$	ity in y-direction is C) u= - $\frac{\partial \varphi}{\partial z}$	D) v= - $\frac{6}{6}$	$\frac{\partial \varphi}{\partial y}$
name of the Subject				Page I

		Q	UESTION BAN	IK 20	16
32. For steady flow in strean function, the velocity in y-direction is []					
A) v= - $\frac{\partial \Psi}{\partial y}$	B) v= $\frac{\partial \Psi}{\partial x}$	C) u= - $\frac{\partial \Psi}{\partial z}$	D) u=	<u>дφ</u> ду	
33. For equipotential line, t	he velocity function is			[]
A) Constant	B) Same	C) Reciprical	D) Pro	oportio	nal
34. A grid is obtained by dra	awing a series of equip	otential line is called		[]
A) Stream function	B) Velocity potential	C) Flow net	D) Fro	ee vorte	ex flow
35. The continity equation	n two dimensions is			[]
A) $\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z}$	B) $\frac{\partial u}{\partial y} + \frac{\partial w}{\partial x}$	$C)\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$	<u>/</u>	D) $\frac{\partial u}{\partial x}$	$+\frac{\partial v}{\partial y}$
36. The velocity of flow doe	es not change with resp	ect to space is		[]
A) Steady flow	B) Uniform flow	C) Unsteady flow	D) La	minar f	low
37. The fluid particles are fl	ow along stream lines a	and also rotates about i	ts own axis is	[]
A) Rotational flow	B) Irrotational flow	C) Turbulent flow	D) Compress	ible flo	W
38. The fluid particles are fl	ow along stream lines a	and not rotates about its	s own axis is	[]
A) Rotational flow	B) Irrotational flow	C) Turbulent flow	D) Compress	ible flo	W
39. For two dimensional flo	ow, the velocity in z- di	rection is		[]
A) Constant	B) Unity	C) function of z	D) Zero		
40. Irrotational flow means				[]
A) The fluid doesnot rot	ate while moving	B) The fluid particles	s moves in strai	ght line	2
C) The net rotation of fluid particles about their mass centre is zero D) None of the above					

Prepared by: M. Muzaffar Ahmed and Y. Guru Prasad

Name of the Subject